Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Death Dis ; 15(1): 46, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218945

RESUMO

Entosis is a process that leads to the formation of cell-in-cell structures commonly found in cancers. Here, we identified entosis in hepatocellular carcinoma and the loss of Rnd3 (also known as RhoE) as an efficient inducer of this mechanism. We characterized the different stages and the molecular regulators of entosis induced after Rnd3 silencing. We demonstrated that this process depends on the RhoA/ROCK pathway, but not on E-cadherin. The proteomic profiling of entotic cells allowed us to identify LAMP1 as a protein upregulated by Rnd3 silencing and implicated not only in the degradation final stage of entosis, but also in the full mechanism. Moreover, we found a positive correlation between the presence of entotic cells and the metastatic potential of tumors in human patient samples. Altogether, these data suggest the involvement of entosis in liver tumor progression and highlight a new perspective for entosis analysis in medicine research as a novel therapeutic target.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Entose , Proteômica , Fatores de Transcrição , Proteínas rho de Ligação ao GTP , Proteína 1 de Membrana Associada ao Lisossomo
2.
Gastroenterology ; 165(6): 1505-1521.e20, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657757

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with high intratumoral heterogeneity. There is a lack of effective therapeutics for PDAC. Entosis, a form of nonapoptotic regulated cell death mediated by cell-in-cell structures (CICs), has been reported in multiple cancers. However, the role of entosis in PDAC progression remains unclear. METHODS: CICs were evaluated using immunohistochemistry and immunofluorescence staining. The formation of CICs was induced by suspension culture. Through fluorescence-activated cell sorting and single-cell RNA sequencing, entosis-forming cells were collected and their differential gene expression was analyzed. Cell functional assays and mouse models were used to investigate malignant phenotypes. Clinical correlations between entosis and PDAC were established by retrospective analysis. RESULTS: Entosis was associated with an unfavorable prognosis for patients with PDAC and was more prevalent in liver metastases than in primary tumors. The single-cell RNA sequencing results revealed that several oncogenes were up-regulated in entosis-forming cells compared with parental cells. These highly entotic cells demonstrated higher oncogenic characteristics in vitro and in vivo. NET1, neuroepithelial cell transforming gene 1, is an entosis-related gene that plays a pivotal role in PDAC progression and is correlated with poor outcomes. CONCLUSIONS: Entosis is correlated with PDAC progression, especially in liver metastasis. NET1 is a newly validated entosis-related gene and a molecular marker of poor outcomes. PDAC cells generate a highly aggressive subpopulation marked by up-regulated NET1 via entosis, which may drive PDAC progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Entose , Estudos Retrospectivos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569518

RESUMO

Homotypic entosis is a phenomenon in which one cancer cell invades a neighboring cancer cell and is closed entirely within its entotic vacuole. The fate of entosis can lead to inner cell death or survival. Recent evidence draws attention to entosis as a novel prognostic marker in breast cancer. Nevertheless, little is known about the quantity and quality of the process of entosis in human cancer specimens. Here, for the first time, we analyze the frequency of entotic figures in a case of NOS (Non-Other Specified) breast cancer with regard to location: the primary tumor, regional lymph node, and distant metastasis. For the identification of entotic figures, cells were stained using hematoxylin/eosin and assessed using criteria proposed by Mackay. The majority of entotic figures (65%) were found in the lymph node, 27% were found in the primary tumor, and 8% were found in the far metastasis. In the far metastases, entotic figures demonstrated an altered, atypic morphology. Interestingly, in all locations, entosis did not show any signs of cell death. Moreover, the slides were stained for E-cadherin or Ki67, and we identified proliferating (Ki67-positive) inner and outer entotic cells. Therefore, we propose additional criteria for the identification of pro-survival entotic structures in diagnostic histopathology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Entose/fisiologia , Antígeno Ki-67 , Morte Celular
4.
Theranostics ; 13(6): 1921-1948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064875

RESUMO

Lysophosphatidic acid (LPA) species accumulate in the ascites of ovarian high-grade serous cancer (HGSC) and are associated with short relapse-free survival. LPA is known to support metastatic spread of cancer cells by activating a multitude of signaling pathways via G-protein-coupled receptors of the LPAR family. Systematic unbiased analyses of the LPA-regulated signal transduction network in ovarian cancer cells have, however, not been reported to date. Methods: LPA-induced signaling pathways were identified by phosphoproteomics of both patient-derived and OVCAR8 cells, RNA sequencing, measurements of intracellular Ca2+ and cAMP as well as cell imaging. The function of LPARs and downstream signaling components in migration and entosis were analyzed by selective pharmacological inhibitors and RNA interference. Results: Phosphoproteomic analyses identified > 1100 LPA-regulated sites in > 800 proteins and revealed interconnected LPAR1, ROCK/RAC, PKC/D and ERK pathways to play a prominent role within a comprehensive signaling network. These pathways regulate essential processes, including transcriptional responses, actomyosin dynamics, cell migration and entosis. A critical component of this signaling network is MYPT1, a stimulatory subunit of protein phosphatase 1 (PP1), which in turn is a negative regulator of myosin light chain 2 (MLC2). LPA induces phosphorylation of MYPT1 through ROCK (T853) and PKC/ERK (S507), which is majorly driven by LPAR1. Inhibition of MYPT1, PKC or ERK impedes both LPA-induced cell migration and entosis, while interference with ROCK activity and MLC2 phosphorylation selectively blocks entosis, suggesting that MYPT1 figures in both ROCK/MLC2-dependent and -independent pathways. We finally show a novel pathway governed by LPAR2 and the RAC-GEF DOCK7 to be indispensable for the induction of entosis. Conclusion: We have identified a comprehensive LPA-induced signal transduction network controlling LPA-triggered cytoskeletal changes, cell migration and entosis in HGSC cells. Due to its pivotal role in this network, MYPT1 may represent a promising target for interfering with specific functions of PP1 essential for HGSC progression.


Assuntos
Actomiosina , Neoplasias Ovarianas , Humanos , Feminino , Actomiosina/metabolismo , Entose , Recidiva Local de Neoplasia , Transdução de Sinais , Neoplasias Ovarianas/metabolismo , Movimento Celular/fisiologia
5.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047791

RESUMO

Homotypic entotic figures, which are a form of "cell-in-cell" structures, are considered a potential novel independent prognostic marker in various cancers. Nevertheless, the knowledge concerning the biological role of this phenomenon is still unclear. Since breast cancer cells are remarkably entosis-competent, we aimed to investigate and compare the frequency of entoses in a primary breast tumor and in its lymph node metastasis. Moreover, as there are limited data on defined molecular markers of entosis, we investigated entosis in correlation with classical breast cancer biomarkers used in routine pathomorphological diagnostics (HER2, ER, PR, and Ki67). In the study, a cohort of entosis-positive breast cancer samples paired into primary lesions and lymph node metastases was used. The inclusion criteria were a diagnosis of NOS cancer, lymph node metastases, the presence of entotic figures in the primary lesion, and/or lymph node metastases. In a selected, double-negative, HER2-positive NOS breast cancer case, entoses were characterized by a correlation between an epithelial-mesenchymal transition and proliferation markers. We observed that in the investigated cohort entotic figures were positively correlated with Ki67 and HER2, but not with ER or PR markers. Moreover, for the first time, we identified Ki67-positive mitotic inner entotic cells in clinical carcinoma samples. Our study performed on primary and secondary breast cancer specimens indicated that entotic figures, when examined by routine HE histological staining, present potential diagnostic value, since they correlate with two classical prognostic factors of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Biomarcadores Tumorais , Antígeno Ki-67 , Receptor ErbB-2 , Entose , Metástase Linfática , Receptores de Estrogênio , Receptores de Progesterona
6.
Adv Sci (Weinh) ; 10(14): e2205913, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960682

RESUMO

Entosis is a non-apoptotic cell death process that forms characteristic cell-in-cell structures in cancers, killing invading cells. Intracellular Ca2+ dynamics are essential for cellular processes, including actomyosin contractility, migration, and autophagy. However, the significance of Ca2+ and Ca2+ channels participating in entosis is unclear. Here, it is shown that intracellular Ca2+ signaling regulates entosis via SEPTIN-Orai1-Ca2+ /CaM-MLCK-actomyosin axis. Intracellular Ca2+ oscillations in entotic cells show spatiotemporal variations during engulfment, mediated by Orai1 Ca2+ channels in plasma membranes. SEPTIN controlled polarized distribution of Orai1 for local MLCK activation, resulting in MLC phosphorylation and actomyosin contraction, leads to internalization of invasive cells. Ca2+ chelators and SEPTIN, Orai1, and MLCK inhibitors suppress entosis. This study identifies potential targets for treating entosis-associated tumors, showing that Orai1 is an entotic Ca2+ channel that provides essential Ca2+ signaling and sheds light on the molecular mechanism underlying entosis that involves SEPTIN filaments, Orai1, and MLCK.


Assuntos
Actomiosina , Neoplasias , Humanos , Entose/fisiologia , Septinas , Neoplasias/patologia , Morte Celular , Proteína ORAI1
7.
Nat Commun ; 14(1): 82, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604424

RESUMO

Entosis is cell cannibalism utilized by tumor cells to engulf live neighboring cells for pro- or anti-tumorigenic purposes. It is unknown whether this extraordinary cellular event can be pathogenic in other diseases such as microcephaly, a condition characterized by a smaller than normal brain at birth. We find that mice mutant for the human microcephaly-causing gene Pals1, which exhibit diminished cortices due to massive cell death, also exhibit nuclei enveloped by plasma membranes inside of dividing cells. These cell-in-cell (CIC) structures represent a dynamic process accompanied by lengthened mitosis and cytokinesis abnormalities. As shown in tumor cells, ROCK inhibition completely abrogates CIC structures and restores the normal length of mitosis. Moreover, genetic elimination of Trp53 produces a remarkable rescue of cortical size along with substantial reductions of CIC structures and cell death. These results provide a novel pathogenic mechanism by which microcephaly is produced through entotic cell cannibalism.


Assuntos
Microcefalia , Humanos , Animais , Camundongos , Microcefalia/genética , Entose/fisiologia , Carcinogênese , Mitose/genética , Núcleo Celular
8.
Cell Death Dis ; 13(8): 730, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002449

RESUMO

On glucose restriction, epithelial cells can undergo entosis, a cell-in-cell cannibalistic process, to allow considerable withstanding to this metabolic stress. Thus, we hypothesized that reduced protein glycosylation might participate in the activation of this cell survival pathway. Glucose deprivation promoted entosis in an MCF7 breast carcinoma model, as evaluated by direct inspection under the microscope, or revealed by a shift to apoptosis + necrosis in cells undergoing entosis treated with a Rho-GTPase kinase inhibitor (ROCKi). In this context, curbing protein glycosylation defects with N-acetyl-glucosamine partially rescued entosis, whereas limiting glycosylation in the presence of glucose with tunicamycin or NGI-1, but not with other unrelated ER-stress inducers such as thapsigargin or amino-acid limitation, stimulated entosis. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M; PCK2) is upregulated by glucose deprivation, thereby enhancing cell survival. Therefore, we presumed that PEPCK-M could play a role in this process by offsetting key metabolites into glycosyl moieties using alternative substrates. PEPCK-M inhibition using iPEPCK-2 promoted entosis in the absence of glucose, whereas its overexpression inhibited entosis. PEPCK-M inhibition had a direct role on total protein glycosylation as determined by Concanavalin A binding, and the specific ratio of fully glycosylated LAMP1 or E-cadherin. The content of metabolites, and the fluxes from 13C-glutamine label into glycolytic intermediates up to glucose-6-phosphate, and ribose- and ribulose-5-phosphate, was dependent on PEPCK-M content as measured by GC/MS. All in all, we demonstrate for the first time that protein glycosylation defects precede and initiate the entosis process and implicates PEPCK-M in this survival program to dampen the consequences of glucose deprivation. These results have broad implications to our understanding of tumor metabolism and treatment strategies.


Assuntos
Neoplasias da Mama , Entose , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Feminino , Glucose/metabolismo , Glicosilação , Humanos
9.
Biochim Biophys Acta Gen Subj ; 1866(9): 130184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660414

RESUMO

BACKGROUND: Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS: Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS: DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS: These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE: The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Dissulfiram/farmacologia , Ditiocarb/química , Ditiocarb/farmacologia , Duração da Terapia , Entose , Feminino , Humanos , Células MCF-7
10.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563375

RESUMO

Entosis-a homotypic insertion of one cell into another, resulting in a death of the invading cell-has been described in many reports, but crucial aspects of its molecular mechanisms and clinical significance still remain controversial. While actomyosin contractility of the invading cell is very well established as a driving force in the initial phase, and autophagy induced in the outer cell is determined as the main mechanism of degradation of the inner cell, many details remain unresolved. The multitude of triggering factors and crisscrossing molecular pathways described in entosis regulation make interpretations difficult. The question of the physiological role of entosis also remains unanswered. In this review, we summarize the knowledge of molecular mechanisms and clinical data concerning entosis accumulated so far, highlighting both coherent explanations and controversies.


Assuntos
Autofagia , Entose , Citoesqueleto de Actina , Actomiosina , Autofagia/fisiologia , Morte Celular , Entose/fisiologia
11.
Cells ; 10(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685548

RESUMO

A phenomenon known for over 100 years named "cell-in-cell" (CIC) is now undergoing its renaissance, mostly due to modern cell visualization techniques. It is no longer an esoteric process studied by a few cell biologists, as there is increasing evidence that CICs may have prognostic and diagnostic value for cancer patients. There are many unresolved questions stemming from the difficulties in studying CICs and the limitations of current molecular techniques. CIC formation involves a dynamic interaction between an outer or engulfing cell and an inner or engulfed cell, which can be of the same (homotypic) or different kind (heterotypic). Either one of those cells appears to be able to initiate this process, which involves signaling through cell-cell adhesion, followed by cytoskeleton activation, leading to the deformation of the cellular membrane and movements of both cells that subsequently result in CICs. This review focuses on the distinction of five known forms of CIC (cell cannibalism, phagoptosis, enclysis, entosis, and emperipolesis), their unique features, characteristics, and underlying molecular mechanisms.


Assuntos
Comunicação Celular/fisiologia , Entose/fisiologia , Emperipolese/fisiologia , Humanos
12.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546352

RESUMO

Entosis is a form of nonphagocytic cell-in-cell (CIC) interaction where a living cell enters into another. Tumors show evidence of entosis; however, factors controlling entosis remain to be elucidated. Here, we find that besides inducing apoptosis, TRAIL signaling is a potent activator of entosis in colon cancer cells. Initiation of both apoptosis and entosis requires TRAIL receptors DR4 and DR5; however, induction of apoptosis and entosis diverges at caspase-8 as its structural presence is sufficient for induction of entosis but not apoptosis. Although apoptosis and entosis are morphologically and biochemically distinct, knockout of Bax and Bak, or inhibition of caspases, also inhibits entotic cell death and promotes survival and release of inner cells. Analysis of colorectal cancer tumors reveals a significant association between TRAIL signaling and CIC structures. Finally, the presence of CIC structures in the invasive front regions of colorectal tumors shows a strong correlation with adverse patient prognosis.


Assuntos
Neoplasias do Colo/metabolismo , Entose/fisiologia , Transdução de Sinais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/metabolismo , Caspases/metabolismo , Morte Celular/fisiologia , Linhagem Celular Tumoral , Células HCT116 , Humanos , Glicoproteínas de Membrana/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
FASEB J ; 35(10): e21909, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547144

RESUMO

Metabolic stress contributes to the regulation of cell death in normal and diseased tissues. While different forms of cell death are known to be regulated by metabolic stress, how the cell engulfment and killing mechanism entosis is regulated is not well understood. Here we find that the death of entotic cells is regulated by the presence of amino acids and activity of the mechanistic target of rapamycin (mTOR). Amino acid withdrawal or mTOR inhibition induces apoptosis of engulfed cells and blocks entotic cell death that is associated with the lipidation of the autophagy protein microtubule-associated protein light chain 3 (LC3) to entotic vacuoles. Two other live cell engulfment programs, homotypic cell cannibalism (HoCC) and anti-CD47 antibody-mediated phagocytosis, known as phagoptosis, also undergo a similar vacuole maturation sequence involving LC3 lipidation and lysosome fusion, but only HoCC involves mTOR-dependent regulation of vacuole maturation and engulfed cell death similar to entosis. We further find that the regulation of cell death by mTOR is independent of autophagy activation and instead involves the 4E-BP1/2 proteins that are known regulators of mRNA translation. Depletion of 4E-BP1/2 proteins can restore the mTOR-regulated changes of entotic death and apoptosis rates of engulfed cells. These results identify amino acid signaling and the mTOR-4E-BP1/2 pathway as an upstream regulation mechanism for the fate of live engulfed cells formed by entosis and HoCC.


Assuntos
Aminoácidos/metabolismo , Entose , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígeno CD47/imunologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Sobrevivência Celular , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Fagocitose/imunologia , Biossíntese de Proteínas
14.
BMC Mol Cell Biol ; 22(1): 39, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332531

RESUMO

BACKGROUND: Research on cell-in-cell (CIC) phenomena, including entosis, emperipolesis and cannibalism, and their biological implications has increased in recent years. Homotypic and heterotypic engulfment of various target cells by numerous types of host cells has been studied in vitro and in tissue sections. This work has identified proteins involved in the mechanism and uncovered evidence for CIC as a potential histopathologic predictive and prognostic marker in cancer. Our experimental study focused on non-professional phagocytosis of leukocytes. RESULTS: We studied the engulfment of peripheral blood mononuclear cells isolated from healthy donors by counting CIC structures. Two non-tumorigenic cell lines (BEAS-2B, SBLF-9) and two tumour cell lines (BxPC3, ICNI) served as host cells. Immune cells were live-stained and either directly co-incubated or treated with irradiation or with conventional or microwave hyperthermia. Prior to co-incubation, we determined leukocyte viability for each batch via Annexin V-FITC/propidium iodide staining. All host cells engulfed their targets, with uptake rates ranging from 1.0% ± 0.5% in BxPC3 to 8.1% ± 5.0% in BEAS-2B. Engulfment rates of the cancer cell lines BxPC3 and ICNI (1.6% ± 0.2%) were similar to those of the primary fibroblasts SBLF-9 (1.4% ± 0.2%). We found a significant negative correlation between leukocyte viability and cell-in-cell formation rates. The engulfment rate rose when we increased the dose of radiotherapy and prolonged the impact time. Further, microwave hyperthermia induced higher leukocyte uptake than conventional hyperthermia. Using fluorescent immunocytochemistry to descriptively study the proteins involved, we detected ring-like formations of diverse proteins around the leukocytes, consisting, among others, of α-tubulin, integrin, myosin, F-actin, and vinculin. These results suggest the involvement of actomyosin contraction, cell-cell adhesion, and the α-tubulin cytoskeleton in the engulfment process. CONCLUSIONS: Both non-tumorigenic and cancer cells can form heterotypic CIC structures by engulfing leukocytes. Decreased viability and changes caused by microwave and X-ray irradiation trigger non-professional phagocytosis.


Assuntos
Entose , Fibroblastos/patologia , Leucócitos Mononucleares/patologia , Neoplasias/patologia , Fagocitose , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/citologia , Humanos , Leucócitos Mononucleares/citologia
15.
Sci Rep ; 11(1): 16539, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400683

RESUMO

In many phenomena of biological systems, not a majority, but a minority of cells act on the entire multicellular system causing drastic changes in the system properties. To understand the mechanisms underlying such phenomena, it is essential to observe the spatiotemporal dynamics of a huge population of cells at sub-cellular resolution, which is difficult with conventional tools such as microscopy and flow cytometry. Here, we describe an imaging system named AMATERAS that enables optical imaging with an over-one-centimeter field-of-view and a-few-micrometer spatial resolution. This trans-scale-scope has a simple configuration, composed of a low-power lens for machine vision and a hundred-megapixel image sensor. We demonstrated its high cell-throughput, capable of simultaneously observing more than one million cells. We applied it to dynamic imaging of calcium ions in HeLa cells and cyclic-adenosine-monophosphate in Dictyostelium discoideum, and successfully detected less than 0.01% of rare cells and observed multicellular events induced by these cells.


Assuntos
Células/citologia , Microscopia de Fluorescência/métodos , Animais , Encéfalo/citologia , Cálcio/análise , AMP Cíclico/análise , Dictyostelium/química , Dictyostelium/ultraestrutura , Cães , Entose , Células Epiteliais/ultraestrutura , Desenho de Equipamento , Proteínas de Fluorescência Verde , Células HeLa/química , Células HeLa/ultraestrutura , Humanos , Interneurônios/ultraestrutura , Proteínas Luminescentes , Células Madin Darby de Rim Canino , Camundongos , Microscopia de Fluorescência/instrumentação , Neurônios/ultraestrutura , Semicondutores
16.
PLoS One ; 16(2): e0246402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33544774

RESUMO

Homotypic or heterotypic internalization of another, either living or necrotic cell is currently in the center of research interest. The active invasion of a living cell called entosis and cannibalism of cells by rapidly proliferating cancers are prominent examples. Additionally, normal healthy tissue cells are capable of non-professional phagocytosis. This project studied the relationship between non-professional phagocytosis, individual proliferation and cell cycle progression. Three mesenchymal and two epithelial normal tissue cell lines were studied for homotypic non-professional phagocytosis. Homotypic dead cells were co-incubated with adherent growing living cell layers. Living cells were synchronized by mitotic shake-off as well as Aphidicolin-treatment and phagocytotic activity was analyzed by immunostaining. Cell cycle phases were evaluated by flow cytometry. Mesenchymal and epithelial normal tissue cells were capable of internalizing dead cells. Epithelial cells had much higher non-professional phagocytotic rates than mesenchymal cells. Cells throughout the entire cell cycle were able to phagocytose. The phagocytotic rate significantly increased with progressing cell cycle phases. Mitotic cells regularly phagocytosed dead cells, this was verified by Nocodazole and Colcemid treatment. Taken together, our findings indicate the ability of human tissue cells to phagocytose necrotic neighboring cells in confluent cell layers. The origin of the cell line influences the rate of cell-in-cell structure formation. The higher cell-in-cell structure rates during cell cycle progression might be influenced by cytoskeletal reorganization during this period or indicate an evolutionary anchorage of the process. Recycling of nutrients during cell growth might also be an explanation.


Assuntos
Entose , Células Epiteliais , Células-Tronco Mesenquimais , Neoplasias/patologia , Fagocitose , Ciclo Celular , Divisão Celular , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/patologia
17.
Cell Death Differ ; 28(2): 799-813, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33110215

RESUMO

Entosis was proposed to promote aneuploidy and genome instability by cell-in-cell mediated engulfment in tumor cells. We reported here, in epithelial cells, that entosis coupled with mitotic arrest functions to counteract genome instability by targeting aneuploid mitotic progenies for engulfment and elimination. We found that the formation of cell-in-cell structures associated with prolonged mitosis, which was sufficient to induce entosis. This process was controlled by the tumor suppressor p53 (wild-type) that upregulates Rnd3 expression in response to DNA damages associated with prolonged metaphase. Rnd3-compartmentalized RhoA activities accumulated during prolonged metaphase to drive cell-in-cell formation. Remarkably, this prolonged mitosis-induced entosis selectively targets non-diploid progenies for internalization, blockade of which increased aneuploidy. Thus, our work uncovered a heretofore unrecognized mechanism of mitotic surveillance for entosis, which eliminates newly born abnormal daughter cells in a p53-dependent way, implicating in the maintenance of genome integrity.


Assuntos
Aneuploidia , Neoplasias da Mama/patologia , Mitose , Proteína Supressora de Tumor p53/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Entose , Células Epiteliais , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Modelos Genéticos
19.
Cell Rep ; 32(8): 108071, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846129

RESUMO

Entosis is a cell-in-cell (CIC)-mediated death program. Contractile actomyosin (CA) and the adherens junction (AJ) are two core elements essential for entotic CIC formation, but the molecular structures interfacing them remain poorly understood. Here, we report the characterization of a ring-like structure interfacing between the peripheries of invading and engulfing cells. The ring-like structure is a multi-molecular complex consisting of adhesive and cytoskeletal proteins, in which the mechanical sensor vinculin is highly enriched. The vinculin-enriched structure senses mechanical force imposed on cells, as indicated by fluorescence resonance energy transfer (FRET) analysis, and is thus termed the mechanical ring (MR). The MR actively interacts with CA and the AJ to help establish and maintain polarized actomyosin that drives cell internalization. Vinculin depletion leads to compromised MR formation, CA depolarization, and subsequent CIC failure. In summary, we suggest that the vinculin-enriched MR, in addition to CA and AJ, is another core element essential for entosis.


Assuntos
Actomiosina/metabolismo , Junções Aderentes/metabolismo , Morte Celular/genética , Formação de Célula em Célula/genética , Entose/genética , Humanos
20.
Front Immunol ; 11: 650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528462

RESUMO

The liver is our largest internal organ and it plays major roles in drug detoxification and immunity, where the ingestion of extracellular material through phagocytosis is a critical pathway. Phagocytosis is the deliberate endocytosis of large particles, microbes, dead cells or cell debris and can lead to cell-in-cell structures. Various types of cell endocytosis have been recently described for hepatic epithelia (hepatocytes), which are non-professional phagocytes. Given that up to 80% of the liver comprises hepatocytes, the biological impact of cell-in-cell structures in the liver can have profound effects in liver regeneration, inflammation and cancer. This review brings together the latest reports on four types of endocytosis in the liver -efferocytosis, entosis, emperipolesis and enclysis, with a focus on hepatocyte biology.


Assuntos
Compartimento Celular/fisiologia , Emperipolese/fisiologia , Endocitose/fisiologia , Entose/fisiologia , Hepatócitos/fisiologia , Fígado/citologia , Animais , Humanos , Imunidade , Inativação Metabólica , Fígado/metabolismo , Regeneração Hepática , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...